Research
My research interests are efficient neural rendering technology, including: 3D generation, dynamic and static scene neural fields, human body rendering, etc.
* indicates equal contribution
|
|
4D Gaussian Splatting for Real-Time Dynamic Scene Rendering
Guanjun Wu*,
Taoran Yi*,
Jiemin Fang,
Lingxi Xie,
Xiaopeng Zhang,
Wei Wei,
Wenyu Liu,
Qi Tian,
Xinggang Wang
arxiv, 2023
[Paper]
[Page]
[Code]
We introduce the 4D Gaussian Splatting (4D-GS) to achieve real-time dynamic scene rendering while also enjoying high training and storage efficiency. Our 4D-GS method achieves real-time rendering under high resolutions, 70 FPS at a 800*800 resolution on an RTX 3090 GPU, while maintaining comparable or higher quality than previous state-of-the-art methods.
|
|
GaussianDreamer: Fast Generation from Text to 3D Gaussian Splatting with Point Cloud Priors
Taoran Yi,
Jiemin Fang,
Junjie Wang,
Guanjun Wu,
Lingxi Xie,
Xiaopeng Zhang,
Wenyu Liu,
Qi Tian,
Xinggang Wang
arxiv, 2023
[Paper]
[Page]
[Code]
A fast 3D generation framework, named as GaussianDreamer, is proposed, where the 3D diffusion model provides point cloud priors for initialization and the 2D diffusion model enriches the geometry and appearance. Our GaussianDreamer can generate a high-quality 3D instance within 25 minutes on one GPU, much faster than previous methods, while the generated instances can be directly rendered in real time.
|
|
GNeuVox: Generalizable Neural Voxels for Fast Human Radiance Fields
Taoran Yi*,
Jiemin Fang*,
Xinggang Wang,
Wenyu Liu
arxiv, 2023
[Paper]
[Page]
[Code]
In this paper, we propose a rendering framework that can learn moving human body structures extremely quickly from a monocular video, named as GNeuVox. Our method shows significantly higher training efficiency compared with previous methods, while maintaining similar rendering quality.
|
|
TiNeuVox: Fast Dynamic Radiance Fields with Time-Aware Neural Voxels
Jiemin Fang*,
Taoran Yi*,
Xinggang Wang,
Lingxi Xie,
Xiaopeng Zhang,
Wenyu Liu,
Matthias Nießner,
Qi Tian
SIGGRAPH Asia Conference Papers, 2022
[Paper]
[Page]
[Code]
TiNeuVox completes training with only 8 minutes and 8-MB storage cost while showing similar or even better rendering performance than previous dynamic NeRF methods.
|
Template is adapted from Here
Last updated: Oct 2023
|
|